The use of MIKE21 to study the morphodynamic evolution of the mid-bay barrier beach system of Inner Dingle Bay, Co. Kerry, Ireland

> Dr. Michael O'Shea Malachy Walsh and Partners

Contents

- Why Study Morphodynamics of A Barrier Beach System Dingle Bay?
- Tools and Methods
- Numerical Modelling
- Main Findings of Study

Study Site - Dingle Bay

Why Study Barrier Breaching in Dingle Bay?

Scientific Value – Apparent <u>Naturally</u> Evolving Dynamic Coastal System

Civic Concern – Flooding, Impact on Economic Value, Loss of Habitat/Amenity

Why Study Barrier Breaching in Dingle Bay?

Breaching of Rossbeigh – 2008

5 Million Tonnes Eroded Breach in Barrier grows to almost 1Km

Why Study Barrier Breaching in Dingle Bay?

Reported increase in Flooding - Assess Flood Risk Barrier Beach Behaviour - Compare with Established Concepts Rapid Change in Coastal Landscape - Predict Evoluti

- 1. Imagery Analysis
- 2. Coastal Evolution Monitoring
- 3. Sediment Analysis
- 4. Hydrodynamic Analysis

1.Imagery Analysis – Aerial Photography, Satellite Imagery, Admiralty Charts and Historic Maps

Predominantly Qualitative Longer Term Evolution of Barrier Beach Identifies Morphological pattern during breaching period 2000-2012 Characterises Morphodynamic Zones on Rossbeigh

1.Imagery Analysis – Long Term Morphology

1.Imagery Analysis – Morphodynamic Zones on Rossbeigh Swash Aligned –Shore Normal Incident Wave Direction - Stable Drift Aligned – Shore Angled to Incident Wave Direction –Dynamic

2. Coastal Evolution Monitoring – Topographic and Bathymetric Surveys

Quantitative – Rates of Shoreline Change, Volumes of Erosion/DepositionCompare Recession Rates with Established Coastal Formulas (Van Rijn CERC)Developed Surf Zone Bathymetry CraftAssess post breaching evolution of RossbeighMonitor Evolution of Ebb Tidal Bar

2. Coastal Evolution Monitoring – Ebb Tidal Bar Migration - Breach Development

3. Sediment Analysis – Sediment Sampling, Aeolian transport, Wind Speed, Sediment Dye testing

Quantifying Sediment Transport Climate on Rossbeigh Examining Role of Aeolian Transport – Regeneration of Dunes

4. Hydrodynamic Analysis – Wave Gauges, Tidal Current Meters,

DHI Mike 21 ST HD SW

- 1. Short Term Hydrodynamic Modelling
- 2. Long Term Morphodynamic Modelling
- 3. Grain Size Trend Analysis Validation
- 4. Ocean Radar Trial Results Validation

Model Domain – Dingle Bay

Calibration – Wave and Tidal

Calibration – Parameter Tuning

Module	Parameter	Value
HD	Eddy Viscosity - Smagorinsky	0.28
	Bed Resistance (Manning)	32 m ⁻³ /s
ST	porosity	0.4
	grain size	0.25
	Bank erosion slope failure	30 Deg angle of repose
SW	Spectral	Fully spectral
	Time	Interstationary
	Spectral discretisation	25 frequencies, min of 0.055hz
	Directional discretisation	16 over 360 Deg rose
	Wave breaking	Gamma of 0.8 Alpha 1
	White capping	4.5 - constant
	Directional Spreading Index	4

Hydrodynamic Modelling

Hydrodynamic Analysis Short Term Numerical Modelling

Quantify the Hydrodynamic drivers of Coastal Evolution

Hydrodynamic Modelling

Hydrodynamic Analysis –

Identify key features Influencing Morphodynamics – e.g. Ebb Tidal Bar Turning Waves

Long Term Morphodynamic Modelling

Adopted an experimental Schematised approach

Developed evolutionary timeline by extrapolating trends of measured rates of sediment transport

Updated Bathymetry

Monthly Tidal Cycle +Representative Wave Climate +Morphological Scale Factor

= Reduction in Simulation (Years to Weeks)

2013 Bathymetry

Main Findings – Evolutionary Timescale

5 Phase evolutionary Cycle – 35 years from Erosion to Stability

Monitored

Predicted

Coastal Flood Risk Modelling

- **3 Scenarios (Past, Present and Future)**
- 4 m surge at high tide

2000

2013

Coastal Flood Risk Modelling

- **3 Scenarios (Past, Present and Future)**
- 4 m surge at high tide

Increase in Water Level – due to deepening of channel rather than flow through breach

2013

2030 (Stage 4)

Summary of Findings

Identified Morphodynamic Factors Influencing Breaching

Predicted Evolution of Breached Barrier System to the year 2035

Developed Schematised Numerical Modelling Method for Long Term Morphodynamics Quantified the Flood Risk

Further Work

Continued Surveys to update Numerical Model

Assess SLR impact on predictions

Questions?

Thank You

Dr. Michael O'Shea Malachy Walsh and Partners