

Dawlish Warren Beach Management System

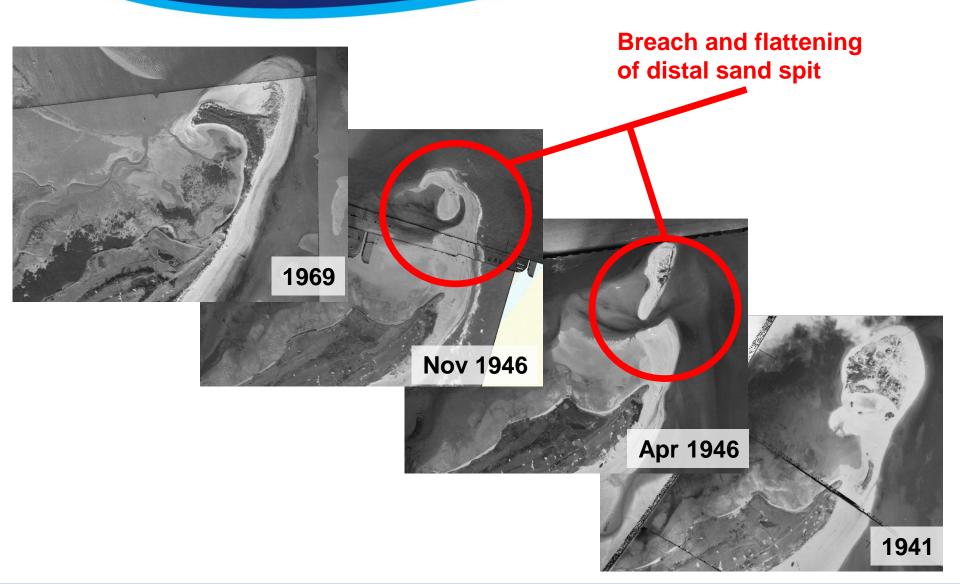
Joshua Gibson, Atkins Ltd Andrew Wareing, Atkins Ltd

Contents

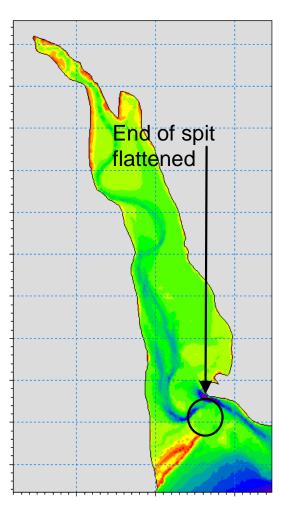
- Strategic context
- Technical approach
- Finding a sustainable solution
- Scheme development
- Numerical Modelling

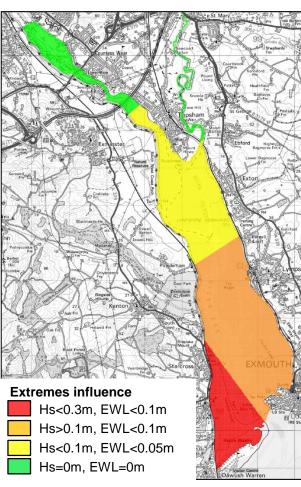
Strategic Context

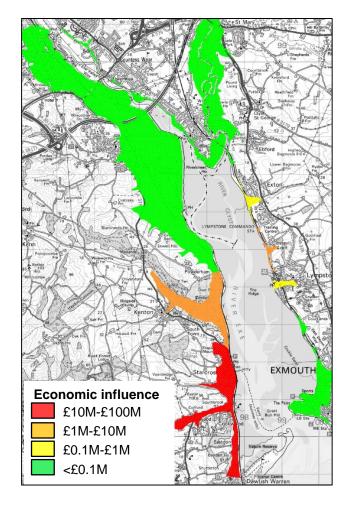
Long term management


- Climate change
- People and infrastructure
- Designated environment

Dawlish Warren sand spit


- Storm sheltering function
- Designated environment
- Legacy of hard engineering




Strategic Approach: historic analysis

Technical Approach: economic drivers

Design development: Overview

Pole Sands

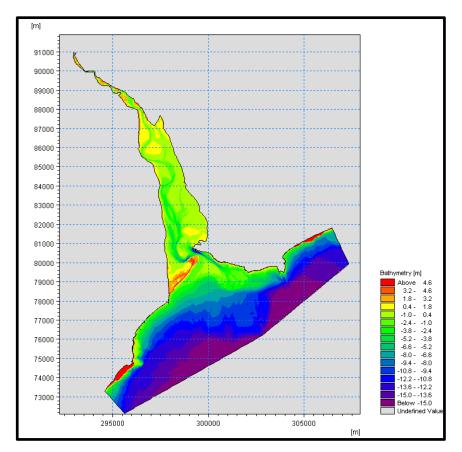
Dredging and recharge: working with estuary scale natural processes

Buried geotube at the neck: improving sheltering function

> Gabion removal: enhancing natural environment

Flood wall: managing local flood risk Groyne works: improving beach management

Scheme development to date



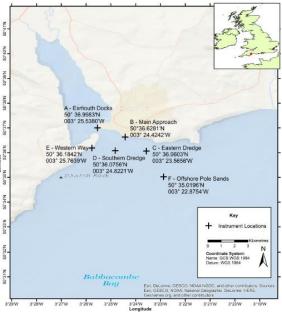
Numerical Modelling: introduction

- Need for Modelling
- Data Collection
- Modelling Approach
 - Model Build
 - Calibration and Validation
- Results
 - Impact on wave climate
 - Impact on tidal hydrodynamics
 - Dredge Plume assessment

Numerical Modelling: need for modelling

Need for Modelling

- Support the EIA
 - WFD Assessment
 - Habitats Regulations Assessment
 - Coastal Impact Assessment
- Formal licencing
 - Marine Licence
 - Crown Estate
 - Planning Permission Teignbridge District Council
- Inform the design

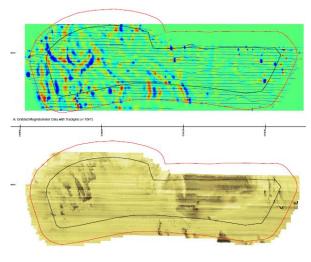


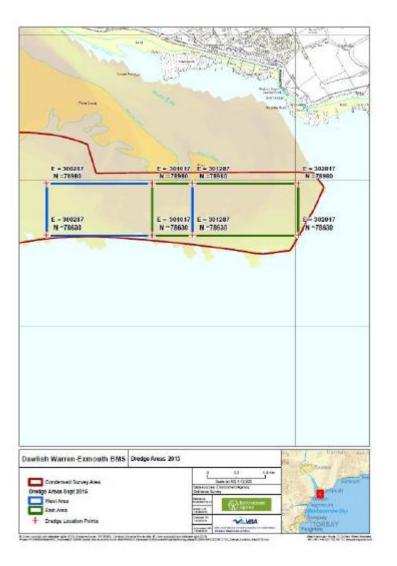
Numerical Modelling: data collection

Data Collection

- Acoustic Doppler Current Profiler
- Tide Gauge
- Dye release
- Drogue
- Vibrocore survey
- Geophysical survey

Site	Parameter
A - Exmouth Docks	Water Levels, Currents, Wave
B – Exmouth Main Approach Channel	Water Levels, Currents
C – Pole Sands (east)	Water Levels, Currents, Wave*, Turbidity, Dye
D – Pole Sands (west)	Water Levels, Currents, Wave**, Turbidity, Dye
E – Western Way	Water Levels, Currents
F – Offshore	Water Levels, Currents, Wave**

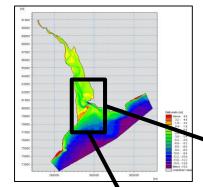

Dredge Scheme development

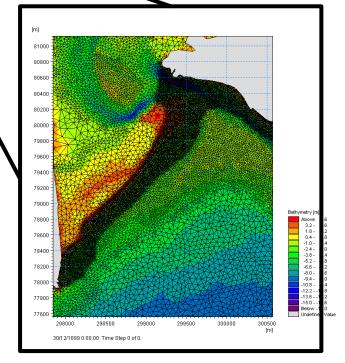

Dredge Areas

- Dredge Options
 - Eastern Site
 - Western Site
 - Combined Site

Scheme Representation in the model

Numerical Modelling: modelling approach

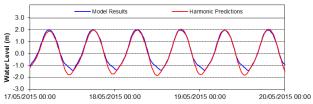



Modelling Methodology

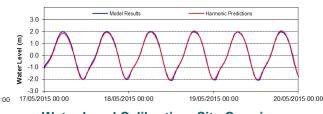
- Mesh Development
- MIKE21 Hydrodynamic (HD)
 - Baseline Calibration
 - Dredge Pocket Comparison
- MIKE21 Spectral Wave (SW)
 - Baseline Calibration
 - Dredge Pocket Comparison

• MIKE21 Particle Tracking (PT)

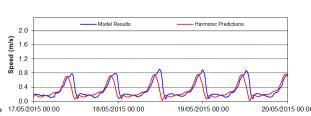
- Cutter Suction Dredger
- Trailer Hopper Dredger

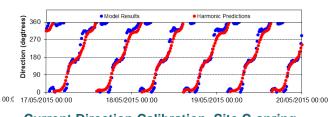


Numerical Modelling: calibration



Calibration Parameters:


• Water Level, Current Speed & Current Direction


Water Level Calibration, Site B-spring

Water Level Calibration, Site C-spring

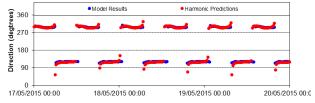
Current Speed Calibration, Site C-spring

Current Direction Calibration, Site C-spring

Water Level Calibration, Statistics

	Site	Percentage time tolerance achieved	Phase	Degree of Calibration
	Α	96.9%	15 mins	Excellent
	В	89.0%	15 mins	Very Good
	С	100%	0 mins	Excellent
D	D	100%	0 mins	Excellent
	E	88.3%	10 mins	Very Good

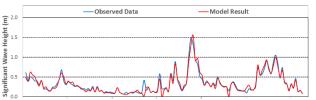
Current Speed Calibration, Statistics


	Site	Percentage time tolerance achieved	Phase	Degree of Calibration
	Α	96.9%	15 mins	Excellent
	В	89.0%	15 mins	Very Good
	С	100%	0 mins	Excellent
0	D	100%	0 mins	Excellent
	Е	88.3%	10 mins	Very Good

Current Direction Calibration, Statistics

Site	Percentage time tolerance achieved	Phase	Degree of Calibration
Α	79.7%	7 mins	Good
В	94.0%	14 mins	Excellent
С	82.6%	15 mins	Very Good
D	81.0%	1 mins	Very Good
Е	80.5%	5 mins	Very Good

Current Speed Calibration, Site B-spring



Current Direction Calibration, Site B-spring

Numerical Modelling: calibration

Calibration Parameters:

- Waves
- Wind
- Dispersion Coefficient

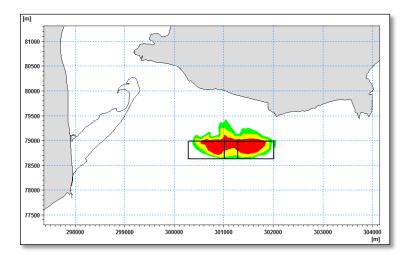
14/05/2015 00:00 19/05/2015 00:00 24/05/2015 00:00 29/05/2015 00:00 03/06/2015 00:00 08/06/2015 00:00 13/06/2015 00:00

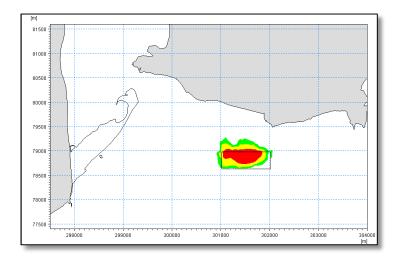
Wave Height, Site D

Wave Period, Site D

Drop 1 Drop 2 Drop 3 Drop 4 Calibrated Drogue Tracks Pole Sands Drop 4 Calibrated Drogue Tracks Pole Sands Drop 4 Calibrated Drogue Tracks Pole Sands

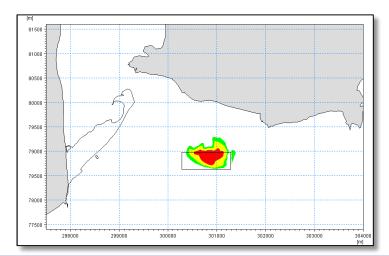
Spring tide (4th June)


Comparison of measured and modelled aerial plume extent, neap tide (25th June)


Transect	Measured Result (m²)	Model Result (m²)	Factor difference
1	6,794	10,595	1.6
2	30,041	12,691	2.4
3	39,984	14,300	2.8
4*	0	27,108	-
5	12,500	10,015	1.2
6	29,345	14,530	2.0
7	19,007	48,100	2.5
8*	2,471	-	-
9	10,786	10,516	1.0
10	5,807	10,484	1.8
11	5,244	8,793	1.7
12*	0	8,836	-
13*	0	8,379	-
14	7,274	9,693	1.3
15	14,545	14,986	1
16	8,936	15,056	1.7
		Average	1.75
TOTAL	192,734	224,082	1.2

Wave Direction, Site D

Numerical Modelling: model results

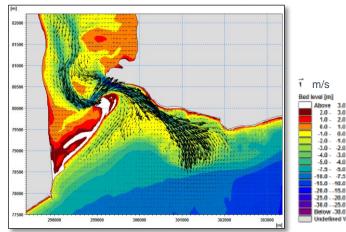

Wave Modelling

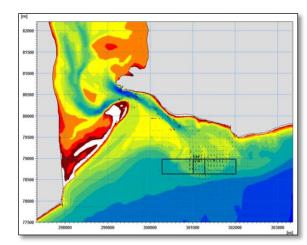
Percentage change in wave height contours corresponding to high water for 100% AEP for wave direction 150° for combined dredge site (above left), eastern dredge site (above right) and western dredge site (right)

	% Ch	ange in V	Wave Height
		Above	10.0
		5.0 -	10.0
		3.0 -	5.0
		-3.0 -	3.0
		-5.0 -	-3.0
è		-10.0 -	-5.0
		Below	-10.0
		Undefin	ied Value

Numerical Modelling: model results

2.0

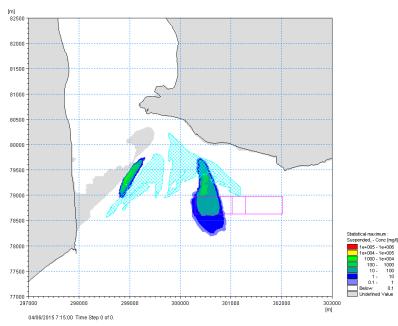

Tidal Flow Modelling


Summary of change of current speed (%), Combined Site - neap

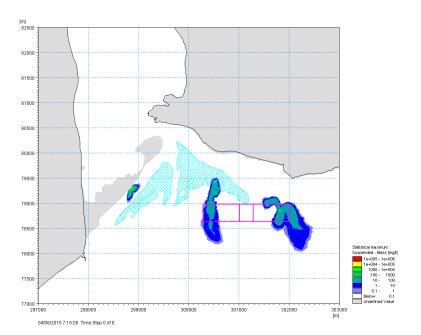
Area	State of tide			
	LW	PF	HW	PE
Overall	16.3	3.0	4.6	6.0
Dredge area	26.0	4.8	3.5	13.8
Nourish site	2.6	1.4	8.4	1.0
Exe Channel	0.1	0.5	1.0	0.2

Summary of change of current speed (%), **Combined Site - spring**

Area	State of tide			
	LW	PF	HW	PE
Overall	22.0	9.9	2.5	12.6
Dredge area	34.2	11.9	3.2	12.6
Nourish site	1.7	3.5	1.9	0.4
Exe Channel	0.6	0.3	0.6	0.3



Change in current velocity for calm conditions, baseline (top) and change in velocity (right) for combined dredge option.


Numerical Modelling: model results

Dredge Plume Modelling

Dredge plume extent – Cutter Suction Dredger (spring tide, west site)

Dredge plume extent – Trailing Suction Hopper Dredger (spring tide)

Thank you and questions

<u>Andrew.Wareing@atkinsglobal.com</u> <u>Josh.gibson@atkinsglobal.com</u>

https://www.gov.uk/government/publications/dawlish-warren-andexmouth-beach-management/dawlish-warren-and-exmouth-beachmanagement