L'utilizzo di modelli di processo nell'upgrading di impianti di depurazione: il caso di Savignano sul Rubicone

I. Basta, M. Guidorzi

Torino, 14-15 Ottobre 2015

Chi siamo

Il Gruppo Hera è una delle principali società multiutility in Italia e opera in 358 comuni delle province di Bologna, Ferrara, Forlì-Cesena, Gorizia, Modena, Padova, Pesaro e Urbino, Pordenone, Ravenna, Rimini, Trieste e Udine, in 3 comuni della provincia di Firenze e in 1 comune della provincia di Venezia.

Il Gruppo Hera fornisce servizi energetici, idrici e ambientali a oltre 4 milioni di cittadini conta circa

8.400 dipendenti.

Chi siamo

Numeri chiave del servizio fognatura e depurazione (*)

Comuni serviti fognatura	172
Comuni serviti depurazione	172
Lunghezza rete fognaria (Km)	14.378
Numero impianti di depurazione	857

Numero di impianti suddivisi per potenzialità

FOSSE IMHOFF:521

AE ≤ 2000: 221

 $2000 < AE \le 1000074$

(10)

 $10.000 < AE \le 100.00037$

0

AE > 100.000: 15

(*) dati aggiornati al 31/12/2013 con riferimento al territorio gestito da HERA Spa Italian DHI Conference 2015

Indice

Inquadramento generale

Premessa

Modelli matematici

Case study

Area impiantistica impianto di Depurazione Bastia - Savignano sul Rubicone

Schema funzionale impianto

Dati di esercizio

Modello di processo

Stato di fatto

Stato di progetto

Conclusioni

Inquadramento generale

Premessa |

- Applicazione della modellistica di processo, attraverso il software WEST per l'upgrading dell'impianto di depurazione di Bastia sito a Savignano sul Rubicone
- Intervento necessario per garantire il rispetto allo scarico delle normative vigenti:
 - Decreto Legislativo 152/2006
 - Ntot ≤ 15 mg/l
 - Ptot ≤ 2 mg/l
 - Legge Regionale ER 2241/2005
 - Adeguamento al 31/12/2016

Inquadramento generale Modelli matematici

Utilizzabili per:

- Ottimizzare i processi su impianti esistenti
- Configurazione e simulazioni di scenari diversi per valutare funzionamenti degli impianti alternativi (progettazione di controllori e definizione di politiche di gestione alternative; prevedere il comportamento dell'impianto di depurazione in diverse condizioni operative, ambientali e di refluo in ingresso)
- Supporto alla progettazione: upgrading al fine di rispettare normative vigenti o adeguamenti funzionali

Inquadramento generale Modelli matematici - Fasi di sviluppo

Dati impianto

Parametri fisici

Schema impiantistico Volumetria delle vasche Caratteristiche delle macchine installate Profilo altimetrico dell'impianto Tracciato planimetrico delle condotte

Parametri operativi

Modalità di gestione dei parametri regolabili dell'impianto (rapporti di ricircolo, logiche sistemi di aerazione, estrazione fanghi di supero, sollevamenti)

Creazione modello

Idraulico

Ricostruzione profilo idraulico al individuare eventuali criticità dal punto di vista idraulico

Eq. semplificate, InfoWorks® CS

Processo

Caratterizzazione dei processi di rimozione degli inquinanti

Eq. semplificate, **WEST**®

Dati influente ed effluente

Parametri fisici

Portate, temperatura, torbidità, conducibilità, livelli vasche

Misure, consumi acquedottistici

Parametri chimici

BOD₆, COD, SST, forme azotate, fosforo, pH, oli e grassi, tensioattivi, cloruri, pesticidi, forme batteriche

Analisi di laboratorio

Calibrazione modello

Italian DHI Conference 2015

Inquadramento generale Modelli matematici - Fasi di sviluppo

Modello di processo

Dati input

- · caratteristiche geometriche vasche
- rapporti di ricircolo (supero e MSLL) e relative logiche di controllo
- · portate reflui in ingresso
- portate estrazione fango di supero
- caratteristiche reflui in ingresso

Criticità

- richiesti frazionamento delle forme carboniose ed azotate in ingresso all'impianto
- · complessità modelli utilizzati
- elevato numero di variabili oggetto di calibrazione

Il frazionamento delle forme carboniose ed azotate richiesto in input non viene effettuato nella gestione ordinaria degli impianti.

Lo stesso vale per molte variabili che caratterizzano i modelli utilizzati per le diverse sezioni impiantistiche e che <u>non essendo misurate diventano oggetto di calibrazione.</u>

Adozione di valori di letteratura sia per il frazionamento che per le variabili cinetiche che caratterizzano in particolare il processo biologico

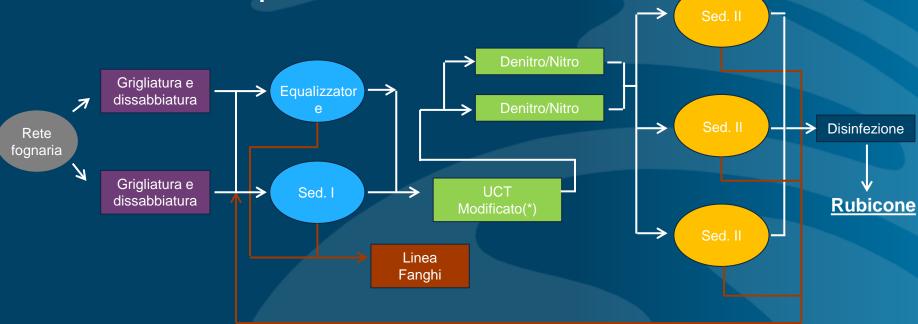
Possibili imprecisioni nella descrizione del processo

Sarebbe ottimale
poter ricorrere a prove
respirometriche

Case Study

Area impiantistica impianto di Depurazione Bastia – Savignano sul Rubicone

L'impianto di depurazione di Bastia, frazione del Comune di Savignano sul Rubicone, tratta acque reflue provenienti dai Comuni di Gambettola, Gatteo, San Mauro Pascoli e Savignano sul Rubicone, Longiano, per le frazioni poste lungo la via Emilia e in piccola parte Cesena e Roncofreddo.


Pretrattamenti

Sezione rimozione carbonio e azoto

Case Study

(*) la volumetria della vasca è complessivamente pari a circa 4500 mc. E' costituita da quattro vasche comunicanti e nella configurazione attuale viene gestita in maniera alternata denitro-nitro-denitro-nitro con concentrazione di O.D. in vasca pari a 0.5 mg/l

Case Study Dati di esercizio

Anno	Q (mc/anno)*1000	COD (kg/d)	BOD (kg/d)
2011	6.062	6.288	12.257
2012	5.795	6.730	13.144
2013	6.321	5.400	11.624
2014	6.532	4.539	9.352

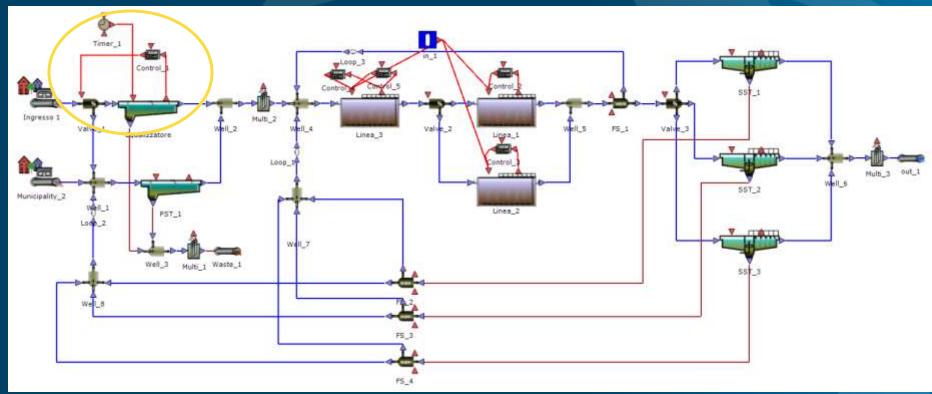
Potenzialità sul carico idraulico (200 l/Ab/d): Potenzialità sul carico organico (130 g/Ab/d): 85.000 AE 89.200 AE

Ipotesi

- 1. Nessuna riduzione della concentrazione delle sostanze inquinanti in ingresso all'impianto mediante pretrattamenti
- 2. Ipotesi funzionamento "Fully-mixed" comparto biologico (denitrificazione e ossidazione)
- 3. Modello ASM 1

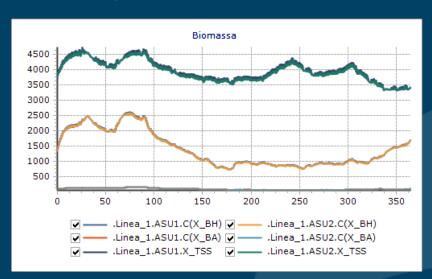
Fasi

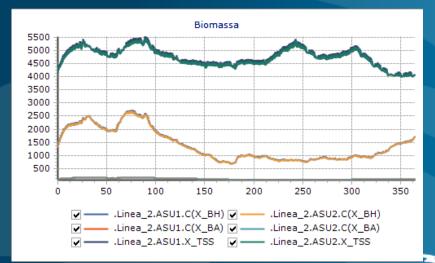
1. frazionamento Standard


Adozione per il frazionamento e le costanti cinetiche del processo di valori standard da letteratura

2. metodo STOWA

Modifica del frazionamento – no respirometria -


$$\begin{split} S_{l,in} &= COD_{out} - f_{cv,ox} \cdot f_{v,ox} \cdot SST_{out} \\ S_{S,in} &= COD_{in} - f_{cv,in} \cdot f_{v,in} \cdot SST_{in} - S_{l,in} \\ X_{S,in} &= a \cdot BOD_{5,in} - S_{5,in} \\ X_{I,in} &= COD_{in} - S_{I,in} - S_{5,in} - X_{5,in} \end{split}$$



Output

1. SRT = 9 giorni - <u>frazionamento Standard</u>

2. SRT = 7.8 giorni - metodo STOWA

Output - MODELLO

1. Effluente – frazionamento Standard

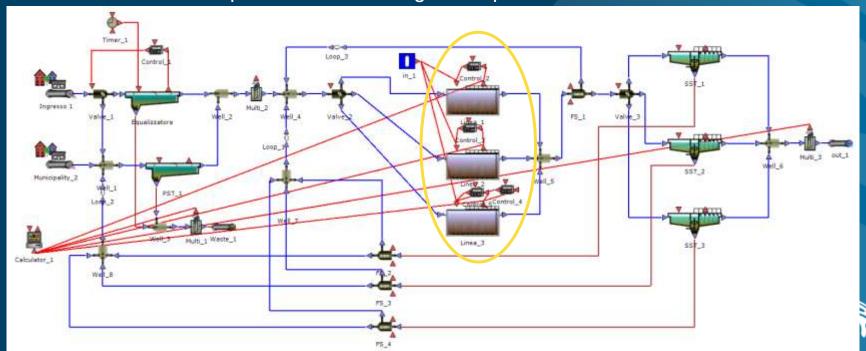
	COD	NO	NH	TKN	TN	BOD	TSS
MAX	76.62	20.28	4.14	5.94	23.06	5.36	13.47
MIN	15.18	5.78	0.59	2.40	8.56	2.90	9.96
DEV ST.	17.86	3.22	0.43	0.42	3.18	0.66	0.79
MEDIA	40.71	11.33	1.07	2.96	14.29	3.85	11.29

2. Effluente – metodo STOWA

	COD	NO	NH	TKN	TN	BOD	TSS	
MAX	53.65	21.52	4.19	6.07	24.36	5.19	14.61	
MIN	21.60	5.74	0.60	2.49	8.60	2.73	10.93	
DEV ST.	9.07	3.42	0.43	0.43	3.39	0.68	0.77	
MEDIA	34.62	11.39	1.07	3.07	14.46	3.65	12.76	

Condizioni di funzionamento reali

- 1. SRT 10 12 gg
- 2. Concentrazione solidi in vasca Ca = 4 4.2 g/l
- 3. Effluente


	COD	NO	TKN	TN	BOD	TSS
MAX	66.00	15.60	10.82	20.90	15.70	28.00
MIN	14.00	6.80	0.32	11.50	10.00	5.00
DEV ST.	10.76	1.93	2.15	1.89	0.79	6.02
MEDIA	30.92	12.25	3.00	15.71	10.11	11.25

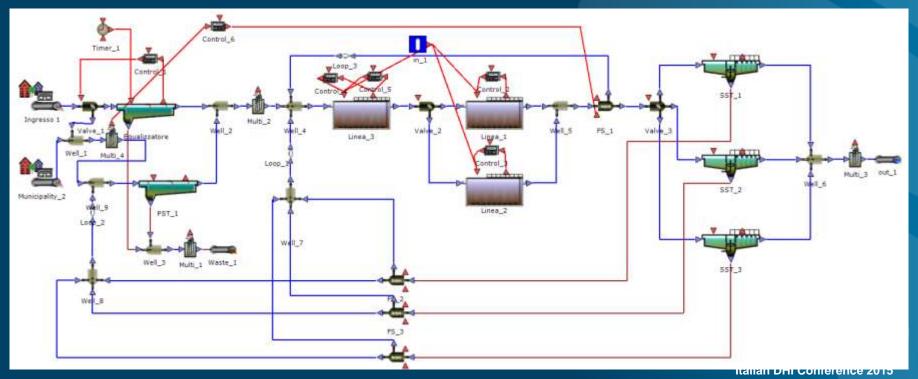
Si è scelto di adottare frazionamento standard

Modifica delle condizioni operative: linee biologiche in parallelo

Modifica delle condizioni operative: linee biologiche in parallelo

A. Effluente – DO AS IS

	COD	NO	NH	TKN	TN	BOD	TSS
MAX	77.37	19.43	7.77	9.67	24.44	5.89	13.45
MIN	15.65	5.65	1.95	3.95	9.93	3.20	9.94
DEV ST.	17.90	2.82	0.89	0.89	2.95	0.69	0.79
MEDIA	41.43	11.08	3.44	5.46	16.54	4.35	11.28


B. Effluente – DO pari a 1 mg/l in tutte e tre le vasche

	COD	NO	NH	TKN	TN	BOD	TSS
MAX	77.01	23.41	5.09	6.93	26.51	5.63	13.46
MIN	15.60	6.30	0.95	2.84	9.62	3.14	9.95
DEV ST.	17.83	3.76	0.60	0.58	3.71	0.64	0.79
MEDIA	41.11	12.88	1.70	3.67	16.55	4.13	11.29

Adottare le tre linee biologiche in parallelo comporta un peggioramento dell'effluente

Modifica delle condizioni operative: variazione ricircolo interno in funzione della portata influente

Modifica delle condizioni operative: variazione ricircolo interno in funzione della portata influente

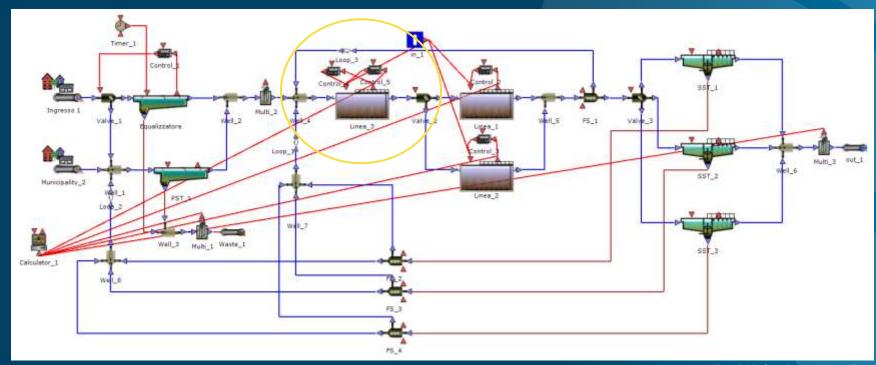
A. Effluente – Ricircolo=3

	COD	NO	NH	TKN	TN	BOD	TSS
MAX	76.65	21.53	4.02	5.76	24.26	5.34	13.46
MIN	15.44	4.84	0.63	2.43	7.54	3.01	9.96
DEV ST.	17.73	4.44	0.41	0.40	4.37	0.61	0.79
MEDIA	40.80	10.50	1.10	3.00	13.50	3.92	11.29

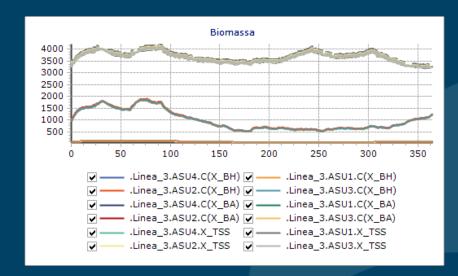
C. Effluente – Ricircolo=1.5

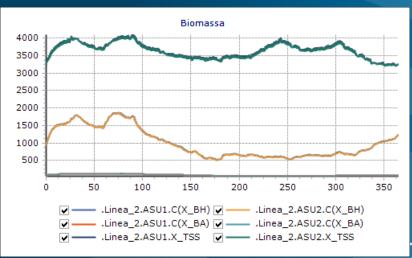
	COD	NO	NH	TKN	TN	BOD	TSS
MAX	76.65	20.85	4.06	5.83	23.62	5.36	13.46
MIN	15.30	4.88	0.62	2.41	7.65	2.95	9.96
DEV ST.	17.80	3.93	0.42	0.41	3.87	0.64	0.79
MEDIA	40.74	10.58	1.09	2.99	13.57	3.88	11.29

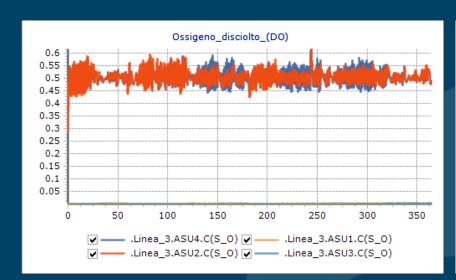
B. Effluente – Ricircolo=2

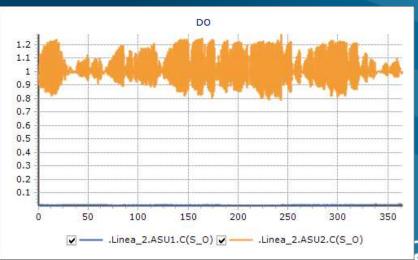

	COD	NO	NH	TKN	TN	BOD	TSS
MAX	76.65	21.09	4.04	5.79	23.85	5.36	13.46
MIN	15.35	4.79	0.63	2.42	7.54	2.97	9.96
DEV ST.	17.80	4.14	0.42	0.40	4.07	0.63	0.79
MEDIA	40.78	10.50	1.09	2.99	13.49	3.89	11.29

Modulare il ricircolo interno in funzione della portata in ingresso comporta un miglioramento delle concentrazioni in uscita.

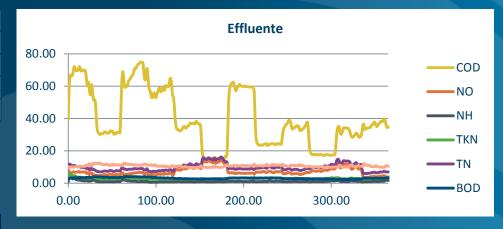



In prima analisi si assume lo schema AS IS con raddoppio della linea 3 come da progetto.


Output

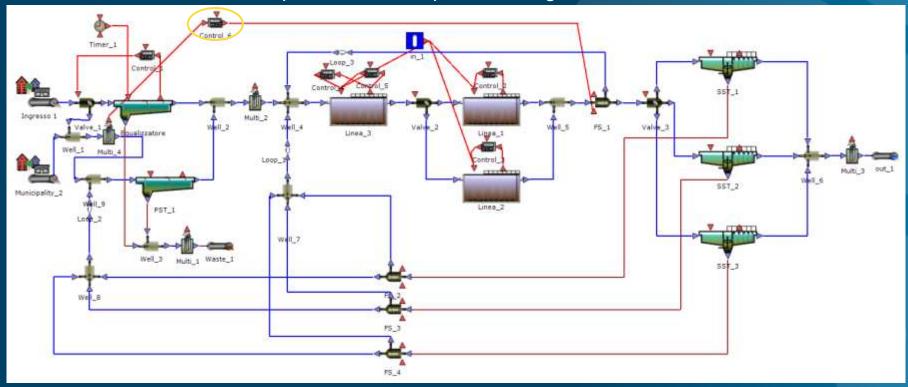

Concentrazione solidi sospesi in vasca, biomassa eterotrofa e autotrofa (linea 3 e linea 2)

Ossigeno disciolto (linea 3 e linea 2)


Output

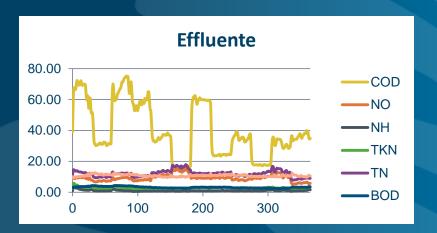
Effluente

	COD	NO	NH	TKN	TN	BOD	TSS
MAX	75.06	15.07	4.07	5.76	17.87	4.35	13.47
MIN	14.36	5.07	0.50	2.31	7.80	2.36	9.96
DEV ST.	17.60	2.04	0.44	0.43	2.05	0.51	0.79
MEDIA	39.90	9.22	1.04	2.87	12.09	3.20	11.29



Nell'attuale configurazione in termini di ricircoli l'ampliamento della volumetria del comparto biologico non comporta significativi miglioramenti.

Modulazione ricircolo interno pari a 2 volte la portata in ingresso

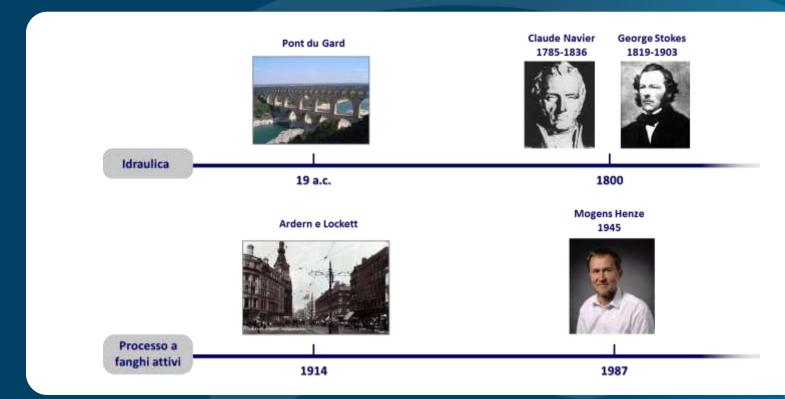


Output

Effluente

	COD	NO	NH	TKN	TN	BOD	TSS
MAX	74.93	14.09	4.17	5.86	16.17	4.35	13.47
MIN	14.34	3.50	0.55	2.36	5.99	2.36	9.96
DEV STAND.	17.62	2.42	0.44	0.44	2.28	0.51	0.79
MEDIA	39.89	7.24	1.12	2.95	9.68	3.20	11.29

Incrementando i ricircoli l'ampliamento della volumetria del comparto biologico comporta significativi miglioramenti in termini di azoto in uscita.



Conclusioni

- La modellazione di processo degli impianti di depurazione è un problema estremamente complesso, in relazione ai processi biologici che presiedono i trattamenti depurativi.
- L'utilizzo di modelli di calcolo o equazioni semplificate ed i dati normalmente disponibili nell'ambito della gestione ordinaria degli impianti di depurazione consentono comunque di avere indicazione sulla capacità di trattamento di un impianto di depurazione acque reflue nella maggior parte dei casi d'interesse.
- La modellazione di processo avanzata, per garantire la consistenza del modello nel caso di analisi di dettaglio, richiede una
 elevata quantità di dati, ottenibili solamente attraverso analisi sperimentali (analisi respirometriche o a titolazione) non
 eseguite ordinariamente sugli impianti gestiti.
- La modellazione di processo degli impianti di depurazione non ha ancora raggiunto la diffusione e l'applicabilità già raggiunte nel campo della modellazione delle reti. Le esperienze effettuate in tale campo sono più limitate e risultano nella maggior parte dei casi relative ad un ambito principalmente accademico.

A che punto siamo?

Thank you

marco.guidorzi@gruppohera.it

Torino, 14-15 Ottobre 2015

