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 Absence of impervious layer to 

prevent leakage, no good drainage

Kölliken waste landfill site

Figure from Mariethoz et al. (2008)

 Waste disposal site

 Drainage system

 Plume extension

 Remediation measures – drilling 

drainage tunnel and wells
 Heterogeneous character of the site



Kölliken waste landfill site

 Absence of impervious layer to 

prevent leakage, no good drainage

Figure from Mariethoz et al. (2008)

 Waste disposal site

 Drainage system

 Plume extension

 245 boreholes, 219 measurements along 

the drainage tunnel, each 5-50m deep

 Remediation measures – drilling 

drainage tunnel and wells 
 Heterogeneous character of the site
 Small part of the plume could not be

recovered by pumping

 Modelled zone includes plume

extension that was not captured



Decision uncertainty, risk measure and costs

 Decision comes with a cost (avoid risk aversion)

 How many new wells are needed? And where?

 Assume that a fixed pumping rate is proposed, would you support approval?

 This has possible impacts on overlying alluvial aquifer, and the local communities

and farmland
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Decision uncertainty, risk measure and costs

What matters?

 Cost effectiveness, impact on stream base flows

 Different outcomes of concern

Which hydrological predictions matter? 

 Link the outcomes to hydrological impacts

 Different predictions of interest

Does prediction uncertainty matter?

 Consider the sensitivity of errors in prediction of those hydrological impacts

 Different sensitivities to uncertainty

 How do we deal with problems when there are multiple stakeholders with different 

interests in a common problem?
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 Uncertainty definition:
o Characterization of data

 Uncertainty propogation:
o Prediction using models

 Uncertainty quantification:
o Identify and quantify input-response 

relations

o Sensitivity analysis

Sparse data

Incomplete/defective 

models

BUT, decisions have to be made

Hydrology road map



Understanding uncertainty: Some uncertainty is reducible
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Reducible uncertainty/ambiguity
 it is a potential deficiency that is due to the lack of knowledge

• can arise from assumptions introduced in the derivation of the 

mathematical model  

• other examples are parameter and deicison uncertainty, 

• not naturally defined in a probabilistic framework

• can lead to a strong bias of predictions

Volume 

sampled

Volume to 

characterize

 Introduce uncertainty in a way that defines statistical dependencies in a clear way



Understanding uncertainty: Other uncertainty is irreducible
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Irreducible uncertainty/hydrological variability

 it is the inherent variability present in the system/environment

 not strictly due to a lack of knowledge 

 naturally defined in a probabilistic framework

 temporal and spatial (material properties, precipitation, river flow, water 

quality etc.)

 Seek ways to better characterize the variability in a probabilistic framework



Variography: From empirical data to theory

© DHI-WASY

 Characterization of spatial correlation

 Theoretical quantities that you cannot observe

 Need to be estimated from available data (empirical covariance/semivariograms)

Variography is a way of quantifying the structure, where you fit a spatial-dependence 

model to your data



Numerical Models - reconstruction of reality

© DHI-WASY

 From little knowledge to a 

schematic representation

 Limited data of physical parameters

 indirect estimation,

 interpolation/extrapolation

 Realization of a computer code 

based on numerical methods 

allowing eqns to be defined in the 

abstract scheme

 Transfer of the simulated results 

onto the real system

Are the simulated results valid?

 Yes, but...

The meaningful transfer of results to reality requires uncertainties on the data to 

appear as uncertainties on the results



Models – simplified representations of complex things
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Modeling for decision making: 

 Models with many sources of uncertainty

 Geological structures

 Package – FEFLOW

 Processes – included in the analysis



Identifying boundaries (internal and external)
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Modeling for decision making: 

 models with many sources of uncertainty

 Geological structures

 Package – FEFLOW

 Processes – included in the analysis

 Boundary conditions and forcing terms

 Parameters (spatial/temporal correlation)



Turning Band Method – for Gaussian simulations

© DHI-WASY

• Perform multi-d simulations at the CPU 

cost of 1-d simulations

• Define a covariance model 𝐶𝑋 𝒙

• Determine the uni-dimensional covariance

𝐶𝑌 for each line on the unit sphere 𝑆𝑑

• Random process on line generations

• Simulate the multidimensional random

field by summing contributions from

random process on uni dimensional lines

LINE GENERATION PROCESS

• Generate a fixed number of on-line 

realizations 𝑍1,𝑖(𝒙 ∙ 𝒖) based on 

normal distributions and

unidimensional covariance. 𝒖 is uni 

dimensional vector on line 𝑖, 𝑍1are

the values of realizations on line 𝑖

• Dependence on number of lines



Conditioning via Kriging
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NEIGHBOURHOOD SEARCH

• More spatial correlation(relative 

to distance)

• Neighbourhood shape

• Number of neighbours

• Weights assigned to each

neighbour within the block

• Draw an unconditional simulation at the target 

location and data locations via the turning 

bands method.

• Compute the residuals (deviations) between the 

data values and simulated values at the data

locations.

• Perform a simple kriging of the residual from its 

values at data locations.

• Add the result to the unconditioned realization



Stochastic realizations for input parameter fields
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 Grid: ~1 mio elements

 400 point measurements

 Data transformation using NST

 Turning band method

 Residual based kriging

 Exponential covariance model

 Back transformation using nst

 30 realizations each (5 sets = 150 

samples)



100 inputs; Now what? 
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 Data uncertainty quantified with 

‚distance measures‘

 Each realization viewed as a 

„dot“

 Detect similarities/redundancies

 Discriminatory data

 Dimensionality reduction (MC)

 Medoid realizations can be 

used to span the space of 

uncertainty

 Decisions are often clearer in a ‚decision space‘ – Distance Kernel Method 

(Caers et al.)



Uncertainty propogation
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Perform simulations accounting for the uncertainty represented as randomness

 Define an abstract probability space (Ω, P)

 Introduce uncertain input as random quantities k(𝜔) 

 The original problem becomes stochastic with solution u(𝜔)

Uncertainty can affect the bc’s, geometry, forcing terms or operators in the 

computational model and numerical solvers

Computational 

model 

+

Transfer functions

Stochastic 

input

Stochastic 

output

FEFLOW   



Sensitivity analysis
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 Define a validation metric to compare uncertain quantities

 Variability: how the variability in an output is linked to the input

 Simulation results do NOT compare directly to data

 Allows to build a ranking of the input sources which might dominate the 

response of the system

 Investigate correlations between input and output



Input-response relations / probability distributions
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 Every realization is a possible location of the well to be added to the network

 Generate a pdf of expected variations

 Link them to pdf of the predictions of interest and chose the well with the highest 

variance
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Normal Score 

Transform

Variography

Turning Band, 

Kriging

Kernel medoid 

clustering

Density 

distributions

Uncertainty workflow interfaced with FEFLOW
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Objectives of a Modeling and Simulation tool

 Assist the user in decision making 

 Enable the user to characterize uncertainty

• For credible decision making

• Contribute usefully towards water resource management issue

Redefining Objectives

Robust decision making requires the use of an ensemble of models,

conditioned on discriminatory data
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