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Abstract

Stochastic subsurface hydrology has been an area of intensive research over the past few
decades, but there are limited software tools to analyze and model heterogeneous groundwa-
ter systems. The focus of this work is to provide an overview of some stochastic approaches
to quantify uncertainty using the Monte Carlo approach. The aim is to work towards a
module for uncertainty quantification in the existing FEFLOW software, a development
of DHI-WASY GmbH. For the scope of this work, the Monte Carlo (MC) technology is
discussed which includes generating the stochastic input (using two-point/multiple-point
statistics in FEFLOW), transforming the input into the output (using FEFLOW determin-
istic solvers), and analyzing the output. Each of these will be briefly discussed with practical
relevance to solve for flows related to groundwater applications. A few numerical results will
be presented for a complex spatially heterogeneous model for the Rhone alluvial aquifer in
Switzerland.

1 Introduction

The management of a groundwater system includes decision making related to groundwater
quality, the volume of water that may be withdrawn from an aquifer, the placement/location
of pumping and recharge wells and/or the rates of pumping/recharge wells. The groundwater
quality is compromised with the presence of contamination sites such as hazardous industrial
wastes, road salts, leachate from landfills, excessive use of fertilizers for agricultural activities
and/or other chemicals. It is desirable to know how the contaminants would spread in the
groundwater in such cases not only to maintain groundwater quality but also to incorporate
measures to prevent such an occurrence. Predicting groundwater flow or solute transport, like
any natural process, is a very difficult task due to their complexity in terms of lacking subsurface
data, heterogeneity and associated uncertainty.

Deterministic approaches based on classical theories still dominate groundwater simulations,
but with certain limitations. Their main drawback is that they generally do not account for
the heterogeneity in subsurface geology. However, the deterministic tools can still help to
model the dynamics of the aquifers by incorporating complex sources/sinks, complex and trends
in hydraulic properties, irregular boundaries, and transient effects. Advanced groundwater
modeling tools, such as FEFLOW, can be used to simulate a multitude of processes involving
fluid flow, groundwater age and contaminant under fully or variably saturated conditions.

It only makes sense to think in terms of stochastic groundwater modeling and simulations
owing to the uncertainty arising from heterogeneity, incomplete characterization, and sparse and
uncertain measurements at a few locations of aquifers. Former work by (Li and McLaughlin,
1991) speak about the incorrectness of defining effective hydraulic conductivity as a property of
the aquifer maintaining that large scale non uniformity/heterogeneity is a part of most field ap-
plications in reality, suggesting the importance of stochastic approach in modeling groundwater
flow and solute transport. Dagan (2002) proposed to treat aquifer properties such as hydraulic
conductivity as stochastic variable. In fact, there are many ways in which randomness could po-
tentially enter the problem in the form of initial values, random boundary value, forces and/or
input parameters. This mainly extends to treating the aquifer properties as stochastic(random)
parameters that influence flow and transport. The randomness reflects the uncertainty of their



values, for example, the hydraulic conductivity varies in space by orders of magnitude. The
idea is to have several realizations of the parameter field, conditioned to available data and es-
timate uncertainty via the variability of the responses from the different realizations. In theory,
the task of estimating or quantifying uncertainty covers distinct components of fundamental
techniques, such as stochastic estimation and simulations for modeling data uncertainty (geo-
statistics, inverse modeling, reduced order modeling, Bayesian statistics, etc.), and numerical
solution of stochastic differential equations and sensitivity analysis. There are many numerical
approaches that can be used to study non-stationary and heterogeneous flow problems in com-
plex field conditions. The most commonly used is the Monte Carlo approach, which typically
entails generating input parameter fields, using deterministic solvers and performing sensitivity
analysis. This approach is practically used due to its simplicity, however they come with high
computation costs.

Figure 1: Contour map of groundwater heads during High Waters including major drainage ditches, pumping
wells and piezometer locations (Figure taken from Glenz (2013))

As rightly pointed out, by (Renard, 2007), there is lacking software, data sets and com-
puting infrastructure to solve applications related to stochastic subsurface hydrogeology on a
real scale despite progress in theories and methodologies. In an attempt to bridge this gap,
this is a first attempt towards including Monte Carlo engine for uncertainty quantification in
the FEFLOW software. The objective of this paper is to illustrate the ongoing work towards
solving groundwater flow through stochastic modelling and numerical simulations using FE-
FLOW. We use uncertainty quantification, for example, to investigate how the variances of
input parameter, such as hydraulic conductivity, contribute to the variances of the observed
heads and velocity. This is illustrated with the example of the Rhone alluvial aquifer (as shown
in Figure 1). Figure 1 illustrates the contour map of groundwater heads including the major
drainage ditches, pumping wells and piezometer locations. The incomplete characterization and
sparsely available data is partly the reason why Glenz (2013) did a quantitative evaluation of
the impact of the Third Rhone correction on groundwater within the Rhone Alluvial aquifer.
Here, we use the same model to account for uncertainty in the steady state modeling of the
aquifer flow system using the Monte Carlo approach with FEFLOW. Random generators based
on two-point and multi-point statistics for stochastic spatial simulations are typically used to
generate the ’space of uncertainty’ of an underlying phenomenon. Collectively, the multiple
realizations represent the uncertainty of the simulated variable. For the scope of this paper,
the conditioned stochastic realizations of hydraulic conductivity are generated using the Turn-
ing Bands method (TBM). The random parameter fields are conditioned to observed data via
residual based kriging methods ((Emery and Lantuejoul, 2006)). The random generator relying
on the TBM is included as a routine in FEFLOW for unstructured computational grids as one
of the methods to account for the two-point variogram-based spatial variability in input param-
eter towards predicting groundwater flow and solute transport. There is also ongoing work on
generating the space of uncertainty using Direct Sampling Technique ((Mariethoz et al., 2010))
and using the Distance Kernel methods (discussed in (Scheidt and Caers, 2009)) to reduce the
dimensionality of the space of input parameters thereby reducing the computational costs signif-
icantly. The deterministic solvers of FEFLOW are then used as transfer functions to generate a



response based on the space of uncertainty. Lastly, a sensitivity analysis is done by illustrating
the variance plots of the hydraulic conductivity and hydraulic heads respectively, to quantify
the variability of the ensemble of solutions based on the initial space of uncertainty.

2 Problem Statement

Here, we consider the steady state flow within a confined/unconfined aquifer. The flow in the
aquifer is governed by the Darcy equations coupled with water balance equation:

u(ω,x) = −K(ω,x)∇h(ω,x) (1)

∇ · u(ω,x) = f(x) (2)

Here u, h and K denotes the Darcy velocity, hydraulic head and hydraulic conductivity(permeability
divided by water viscosity) respectively.

The system of equations is equipped with appropriate boundary conditions, depending on
the problem under consideration. The boundary conditions usually take the form of a constant
head value/head dependent flux/a known flux (to model recharge, evaporation, pumping wells,
stream discharge etc.), and/or no-flow conditions.

The solution depends strongly on the hydraulic conductivity fields that are highly variable
and never perfectly known. Uncertainty crops into these parameters by describing them as as
random fields, i.e. the hydraulic conductivity K(ωi, xi)>0 in each point xi is a random variable
ωi, where i = 1, ..., n. n is taken to be the total number of points/elements in the computa-
tional grid and x1, ..., xn, the random variables K(ω, x1), ...,K(ω, xn) are in general spatially
(and temporally) correlated. The hydraulic conductivity is generated by a random generator
using TBM (more details in section 3. The entire set of realizations for hydraulic conductivity
contribute to the input space of uncertainty. Large number of realizations are typically required
to account for uncertainty and for real-scale problems, computational overheads are essential
to deal with.

3 Methodology

Although the deterministic modeling approach is traditionally used, it is unable to incorporate
the heterogeneity and quantify uncertainty. For the stochastic modeling approach, a random
field generator using TBM is employed to get a set of realizations of the spatially correlated
conductivity field with a stochastic set of underlying variograms (equivalent to sets of variances)
are simulated. Using the FEFLOW deterministic solvers, we investigate how the variances in
hydraulic conductivity contribute to the variances of the observed heads and velocities.

3.1 Generating input parameter fields for Monte Carlo simulations

For generating stochastic realizations, the field of geostatistics covers various ways by focusing
on spatial or spatio-temporal data sets. It is usually desired to have an initial estimate of
model parameter uncertainties, typically consisting of probability density functions, and prefer-
ably consisting of multivariate normal or log-normal probability density functions definable by
mean vectors and covariance matrices. Most often, the parameter fields are represented by
multi-Gaussian random fields. Such a representation allows finding important relations and un-
derstanding the impact of uncertainty, which is essential for a theoretical perspective. Mostly,
the efforts are devoted to finding the most accurate and most general relations between the
various parameters appearing in the stochastic partial differential equations. For the Gaussian
fields, there are various two point statistical methods, both exact and approximate. The meth-
ods include a long list of convolution methods, LU decomposition methods, spectral approaches



based on discrete, continuous and fast Fourier techniques, variants of sequential Gaussian al-
gorithms, and the turning bands method. However, such techniques use the oversimplified
two-point statistics (in the form of variograms) to represent the geological phenomena which,
in reality, may have complex geometrical configurations.

In order to locate certain connectivity/structures, such as curvilinear channels, in the com-
plex geometrical configurations, there is little interest in the Gaussian family of fields. The
limitation of two point statistical approach to capture structural patterns despite all its advan-
tages turns one towards considering alternative approaches, such as the multi-point and the
truncated pluri-Gaussian method. These are facies modeling technique based on multiple point
statistics (MPS) instead of the conventional variograms models built on two point statistics.
The methods commonly include simulating the facies and then simulating the property values
within the facies. MPS framework appears to be a popular choice in the recent years. It relies
on a training image (e.g. a conceptual geological model or a given pattern). From this image,
multi-point statistics are calculated and used for simulation. The advantage of the MPS as com-
pared to traditional variograms or transition probabilities is that they integrate the possibility
of modeling complex spatial relations between the facies. It can be said that two point sta-
tistical approaches are unable to account for connectivity (but controls the flow and transport
reasonably well). The MPS approach is one of the techniques that further equips in reproducing
a global connectivity. One of the main challenges here is to acquire the correct representative
training image including the 3D complexity and heterogeneity at the right scale. These can,
however, be generated by expert knowledge (drawing them by hand, or a conceptual model),
digitizing existing maps, using model output etc. In a 3D configuration, fitting a pattern to a
multidimensional training image becomes more challenging.

Towards including MPS-based methods into FEFLOW, it is worthwhile to mention that
there is ongoing work in interfacing the direct sampling technique by (Mariethoz et al., 2010)with
FEFLOW. This, however, will be the subject of another upcoming publication.

3.1.1 Turning bands method to generate Gaussian, spatially correlated grids on
unstructured grids

The turning bands method, as described in (Emery and Lantuejoul, 2006), is implemented in
the FEFLOW software for structured and unstructured grids. It is a multidimensional random
number generator for the simulation of spatially correlated random fields. If measurement data
is available, the fields can be conditioned using simple or ordinary kriging techniques, making
sure that the input parameter honors the data from field measurements.

3.2 Boosting the efficiency of Monte Carlo simulations

Due to the heterogeneity and incomplete characterizations, a large number of realizations (from
TPS or MPS) are needed to incorporate uncertainty into the model, which result in high compu-
tational costs. Parallel computing is particularly helpful for cost reduction of Monte Carlo based
simulations, but even with the modern day computers, Monte Carlo simulations are limited in
its usage. Different strategies have been discussed to overcome this issue, mainly to reduce
the number of realizations and/or reduce the computational efforts for deterministic solvers.
In the last decade, the works by Dagan (2002) (Scheidt and Caers, 2009) have addressed the
issue of reducing the dimensionality of the stochastic space and finding and optimal subset of
realizations to estimate uncertainty. Ranking methods based on measures of connectivity by
(McLennan and Deutsch, 2005), Karhuenen Loewe Expansions, (Kernel-) Principal Component
Analysis by Sarma et al. (2008), distance kernel method (DKM) by (Scheidt and Caers, 2009)
are a some commonly used ways of reducing computational efforts by smartly selecting fewer
realizations in a multidimensional space, such that the reduced space of uncertainty also spans
the original space of uncertainty. DKM has the added advantage that the selection is based



on the flow responses obtained by an approximate model that are not only computationally
cheaper but also result in an unbiased estimate of uncertainty.

For real-scale simulations, it only makes sense to do a cluster analysis/dimensionality re-
duction for improving efficiency. Towards this end, there is ongoing work to employ DKM by
(Scheidt and Caers, 2009) as means of model reduction into FEFLOW.

Another strategy to overcome the computational costs is to try and reduce the cost of
computing the responses/solutions. Many suggestions include numerical upscaling techniques
where hydraulic conductivity is up-scaled on a coarser grid Durlofsky (2005), (Renard and
de Marsily, 1997) and the fine scale model is replaced by approximate models that are less
computationally expensive. Multi-scale approaches allow better representation of the hydraulic
conductivity on the fine scale((Hou and Wu, 1997), (Jenny and Lunati, 2009)). These methods
have been studied in a deterministic context where iterative schemes are developed to reduced
the error of the solution between fine and coarse scales. In the stochastic context, the works
of (Chen and Durlofsky, 2008), Chen et al. (2011) discuss the representation of variability of
the large number of solutions, thereby suggesting that multi-scale approaches are well suited
as inexpensive deterministic solvers (response functions) in the stochastic context. In a recent
publication, (Josset and Lunati, 2013) employs a subset of realizations using DKM and construct
an error model to correct the potential bias of multi-scale finite volume estimate. The work
indicates that the use of ranking methods such as DKM can be used together with multi-scale
approaches to significantly reduce costs of estimating uncertainty using MC methods.

3.3 FEFLOW deterministic solvers as transfer functions

Each realization from TBM (or any random generator) generates an output sample space using
a transfer function. Many realizations are required to get an accurate representation of the
input sample space and accurate statistics of output sample space. Variants of Monte Carlo
techniques have overcome many limitations relating to multiple scales and the large number of
simulations to obtain reliable statistics. These come in the form of multi-scale and multi-level
Monte Carlo methods. Parallel computing is particularly helpful for Monte Carlo based simula-
tions. As already emphasized in Renard (2007), an all-encompassing software tool for predicting
uncertainty in modeling ground water flow and transport from a practitioner’s perspective could
be very useful. Towards this end, a Monte Carlo engine is developed for FEFLOW. The de-
terministic solvers in FEFLOW for solving flow (and contaminant transport) can be used to
solve the groundwater problem using the parameter fields generated (as described in 3.1). The
FEFLOW solvers play the role of transfer functions translating the input space of uncertainty
to output response maps (in the form of hydraulic head, flow, and/or contaminant).

3.4 Quantifying uncertainty in the response

The ultimate goal of uncertainty analysis is to predict and to understand the factors that affect,
for example, the residual error of the estimation. Obviously, both input parameter variations
and errors in head measurements are mostly responsible for a non-zero estimated residual head.
Hence, the variances of the head that are obtained from the stochastic conductivity fields could
be used to determine the intrinsic errors of the head measurements. A simple form of sensitivity
analysis in the form of computing and visualizing first and second moments can be done using
FEFLOW.



4 Numerical results

4.1 Realizing the Rhone Alluvial Aquifer model in FEFLOW

The methodology described above is applied to the Rhone Alluvial Aquifer (as shown in Figure
1) to solve a steady state 2D groundwater flow in heterogeneous isotropic unconfined aquifer.
The virtual representation of the aquifer is realized using the FEFLOW software for groundwater
flow and contaminant transport modeling. Figure 2 illustrates a part of the aquifer with an
adapted mesh respecting the surface waters and pumping wells. The entire 2D model consists of
54974 mesh elements. The flux across the boundary (as shown in Figure 3 (Left)) between the

Figure 2: Illustration of the finite element mesh for the Rhone aquifer near Evionnaz and Martigny region.

streambed and the aquifer is calculated from the head loss between the specified surface water
level and the model-calculated head in the aquifer. Storage is negligible and the transfers are
asuumed to be occurring instantaneously. The Rhone river to the underlying alluvial aquifer is
considered as a surface water body to consider Cauchy/mixed type boundary condition in the
model. This type of boundary condition is defined by the water level of the surface water and
a transfer coefficient related to the hydraulic conductivity divided by its thickness as shown in
Figure 3 (middle). Additionally, well boundary conditions are specified at the pumping wells
(marked in red) , along with constant hydraulic head value imposed at one location (marked
in purple), as seen in Figure 3(right). The remaining unmarked boundaries assume no-flow
condition. For more details on the exact boundary condition values, see Glenz (2013).

Figure 3: Rhone Aquifer model with marked boundary realized with FEFLOW.

The Turning Bands Method is used to generate hydraulic conductivity fields for the Monte
Carlo simulations. The generated realizations not only honor the prescribed statistics(in the
form of a variogram) but also honor the data (that is usually inferred or measured by the
engineers) at the prescribed locations. For the Rhone aquifer case, Glenz (2013) estimated



the values for hydraulic conductivity of the aquifer on 375 pilot points using PEST software.
The pilot points are uniformly distributed along the model (this is onsidered as an idealized
scenario), and are taken to be the conditioning data set. This workd as a good benchmark
to test the routines implemented in FEFLOW. Different spatial correlations are described via
different variogram models that are constructed using the conductivity values for the 375 points,
188 points and 94 points (as shown in Figure 4). Various models are fitted, such that each

Figure 4: Three sets of variograms (using 3 different conditioning sets with 375, 188 and 94 points) are used to
define the uncertainty in spatial correlations.

variogram is identified by type, sill, range and nugget coefficients as shown in Figure 4.
The TBM random generator is used to generated 100 realizations for each variogram. In

Figure 5, a single realization for each spatial correlation is shown. It can be seen that the
hydraulic conductivity has a more defining spatial correlation for 375 points as opposed to the
field generated using 94 points. The ensemble of 300 realizations define our space of uncertainty

Figure 5: Random hydraulic conductivity for different spatial correlations (i.e conditioning sets).

for the hydraulic conductivity and are provided as input to the deterministic solvers of FEFLOW
to generate the hydraulic head values. In Figure 6, one sees the variance plots for a single
realizatzion for each of the spatial correlations. It can be seen that the variance is lowest
at the conditioning points, and highest in the absence of conditioning points (more room for
uncertainty where the values are not restricted to prescribed data). Also, the variance is higher
when less points are considered in the conditioning set.

The deterministic solver in FEFLOW is used for obtaining the flow and hydraulic head
profiles in the model. Each solution is tied to a realization generated in the previous step. Figure
7 show the mean(over 300 realizations) of hydraulic conductivity, head and flow distributions
in the aquifer.

Lastly, the variances for head and flow profiles are obtained from the ensemble of 300
realizations of hydraulic conductivity. Figure 8 illustrates how the input uncertainty in hydraulic
conductivity affects the simulation results of hydraulic head and flow velocity throughout the
model domain.



Figure 6: Second order moments for different spatial correlations (i.e conditioning sets).

Figure 7: First order moments for 300 realizations of hydraulic conductivity, head and flow velocity.

Figure 8: Second order moments for 300 realizations of hydraulic conductivity, head and flow velocity.



5 Conclusion

In order to quantify uncertainty, the following aspects have been explored. The random gener-
ator for generating the input space of uncertainty uses the Turning Band method. The spatial
correlation is defined by the fitted variograms on three different conditioning data sets. The
stochastic results from TBM are considered as input for uncertainty quantification of hydraulic
heads using the deterministic solver in FEFLOW. For more practical relevance and to avoid
upscaling to different discretization grids, the algorithm is modified to handle arbitrary shaped
domains. The method is validated against spherical and exponential covariance models, how-
ever the results have not been presented here. Using the realizations from the TBM random
generator, the Monte Carlo engine in FEFLOW is used to demonstrate how to generate mean
and variance plots of solution. The results can be further used to indicate additional uncer-
tainties in the fitted model by comparing the predicted variances against the variances of the
computed head/velocity values.

Moreover, there is ongoing work towards providing an interface for using the Direct sampling
technique by Mariethoz et al. (2010), reducing the dimension of the input space of uncertainty
using the Distance Kernel methods by Scheidt and Caers (2009) and further parallelization of
the Monte-Carlo engine in FEFLOW.
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